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Sex differences in Drosophila de
velopment and physiology
Jason W Millington and Elizabeth J Rideout
Male and female flies differ in many aspects of development

and physiology. Identifying the mechanism(s) underlying sex

differences in cell and body growth, organ function, and

metabolism is important in understanding how these male–

female differences in development and physiology are created.

Recently, studies in Drosophila have advanced our

understanding of the sex-specific regulation of growth and cell

signaling pathways, organ homeostasis, and metabolism.

Here, we highlight how this knowledge provides important

insight into the mechanisms underlying sex differences in body

size, stress responses, lifespan, and disease processes. In

addition, we will discuss how studying development and

physiology has revealed previously unrecognized complexity in

the Drosophila sex determination pathway.
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Introduction
Sex differences in Drosophila have been studied in exqui-

site detail for over 100 years. Males and females differ in

sexual traits and reproduction (e.g. genitals, abdominal

pigmentation, reproductive organs), and in development

and physiology (e.g. body size, stress responses, lifespan).

Enormous progress has been made in elucidating the

mechanisms underlying sex differences in sexual traits,

reproduction, development, and behavior [1–7]. The goal

of this review is to highlight how recent studies on organ

growth and function, growth regulation and body size, and

adult metabolism and physiology, have further advanced

our understanding of sex differences in multiple aspects

of development and physiology. In addition, we will

discuss how these recent studies on Drosophila
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development and physiology have provided new insights

into the canonical sex determination pathway.

Sex differences in organ homeostasis:
lessons from the Drosophila intestine
The mechanisms underlying male–female differences in

sex-limited adult structures and sexually dimorphic

organs (e.g. abdominal pigmentation, gonads) are well

studied; however, less is known about sex differences in

cells and organs without obvious sexual dimorphism. In

this section, we will highlight recent studies on male–

female differences in the Drosophila intestine (Figure 1),

and discuss the implications of these findings for sex

differences in the regulation and function of other organs.

In flies, the digestive tract breaks down food, absorbs

nutrients, regulates energy homeostasis, provides a bar-

rier against the external environment, and communicates

with other organs [8]. Recently, many aspects of intestinal

physiology were found to differ between male and female

flies [9��,10�,11,12��], revealing previously unrecognized

sex differences in this key organ. While many factors

affect intestinal physiology, one determinant of intestinal

growth and tissue integrity is the proliferation of intesti-

nal stem cells (ISCs) [8,13]. When ISC proliferation was

compared in males and females, significant sexual dimor-

phism was identified: ISC proliferation is higher in virgin

females than in males [9��,12��]. This sex difference is

further enhanced by mating, as ISC proliferation is sig-

nificantly higher in mated females compared to virgin

females [10�]. One recent study demonstrated a key role

for juvenile hormone (JH) in promoting elevated ISC

proliferation in mated females, and extended this finding

by showing that JH was also responsible for mating-

induced changes to lipid metabolism in differentiated

enterocytes [10�]. Future studies in both the ISCs and

enterocytes will be important to fully characterize sex

differences and mating-induced changes to these cells,

and to examine other intestinal cell types such as the

enteroendocrine cells.

In addition to identifying sexual dimorphism and mating-

induced changes to ISCs and enterocytes, recent studies

have also provided significant insight into how these

differences impact physiology in males and females

throughout the lifespan. For example, increased gut

length due to elevated ISC proliferation enhances repro-

ductive output, as females with reduced gut length had a

modest reduction in egg production [9��]. Similarly, the

female-biased lifespan extension in response to dietary

restriction and rapamycin feeding is associated with a

female identity in the enterocytes of the mid-gut [12��].
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Sex differences in intestinal growth, regeneration, and dysfunction. Recent studies identified significant sex differences in the proliferation of

intestinal stem cells (ISCs) in the Drosophila gut in different contexts. (a) Under homeostatic conditions, female ISCs proliferate at a higher rate

than male ISCs. This leads to increased gut length in females [9��]. (b) In response to infection-induced and detergent-induced damage to the

intestinal epithelium, female ISCs maintain a higher rate of proliferation than male ISCs [9��,12��]. (c) Females develop increased age-related

dysfunction of the intestinal epithelial barrier compared to males [12��], and have increased susceptibility to genetically induced tumors [9��].
In mated females, changes to the gut alter defecation

frequency, fecal pH and water content [11], which could

potentially affect nutrient absorption. Females also sur-

vive longer in response to infection-induced damage to

the intestinal epithelium [12��]; however, more work is

needed to determine whether this increased survival is

linked to sex differences in ISC proliferation and enter-

ocyte physiology. Despite these benefits, there are dis-

advantages associated with female-specific aspects of

intestinal physiology; for example, increased ISC prolif-

eration makes females more susceptible to age-induced

gut barrier dysfunction [12��], and to the development of

genetically induced tumors [9��]. Given the diverse traits

associated with intestinal regulation and function, such as

lifespan [14–16], nutrient absorption [8], and energy

homeostasis [8,17,18], future studies will likely uncover

more physiological consequences of sex differences in the

intestine.
www.sciencedirect.com
Beyond the intestine, these studies reveal a critical need

for systematic studies on sex differences and mating-

induced changes in other organs. Transcriptomic analysis

has revealed sex differences in gene expression in many

organs [19–23]; yet, the developmental and physiological

consequences of these differences remain largely

unknown. Expanding our knowledge of fundamental

cellular processes and organ function in both males and

females will provide critical insight into sex differences in

physiology, stress responses, aging, and disease

susceptibility.

Sex differences in body size: insights into the
sex-specific regulation of signaling pathways
Adult female flies are significantly, and visibly, larger than

male flies. Despite studies demonstrating important roles

for cell–cell signaling pathways in the regulation of sex

differences in imaginal disc growth [24–29], the signaling
Current Opinion in Physiology 2018, 6:46–56
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pathways responsible for creating a male–female differ-

ence in larval and adult body size (sexual size dimor-

phism, SSD) remain unclear. In this section, we will

describe recent advances in our knowledge of which

signaling pathways may be involved in creating SSD in

Drosophila, and discuss how this sex-specific regulation of

cell signaling may impact other aspects of development

and physiology.

Final body size in Drosophila is determined by the rate

and the duration of larval growth [30]. Recent studies

revealed that the mechanism underlying increased body

size in females is an elevated rate of larval growth

[31,32,33��]. In flies, the insulin/insulin-like growth factor

signaling pathway (IIS) plays a key role in promoting an

increased rate of larval growth in response to nutrient

input [34–36], and temperature [37], where increased IIS

activity stimulates growth to enhance body size [38–41].

Interestingly, IIS was recently implicated in the regula-

tion of SSD, since SSD in adult weight was abolished in

flies carrying hypomorphic mutations in the insulin recep-
tor gene (InR) [32]. Supporting a role for IIS in regulating

SSD, flies raised on low nutrient medium, which reduces

IIS pathway activity, abolished SSD in pupal volume

[42��], a measure of larval growth. This reduction in

SSD is not simply a generalized effect of reducing growth

in the faster-growing sex, since SSD is preserved in

animals with pharmacological inhibition of the target of

rapamycin (TOR) pathway [42��], another nutrient-

responsive growth pathway that affects body size

[43,44]. Taken together, these results support a key role

for IIS in regulating SSD [32,42��].

An obvious line of enquiry arising from these studies is a

comparison of IIS regulation in males and females. One

important way that IIS activity and function are modu-

lated is via regulation of the Drosophila insulin-like peptides
(dilps). Although we currently lack a comprehensive

examination of dilp regulation in male and female larvae,

due to complex regulation of dilp genes [40,41,45–48],

Dilp proteins [31,49–53], and Dilp secretion from the

insulin-producing cells (IPCs) [50,54–58], recent progress

has been made. For example, in late third instar larvae,

dilp3 transcript levels were found to be male-biased,

whereas the secretion of Dilp2, an important growth-

promoting Dilp released from the IPCs

[40,41,54,59,60], was higher in female larvae [42��] (Fig-
ure 2). This difference in dilp regulation may affect IIS

activity, as a comparison of IIS activity in late third instar

larvae suggests IIS activity is higher in female larvae than

in male larvae at this stage [42��], though not at earlier

larval stages [33��,42��]. Yet whether the sex-specific

regulation of dilp3 and Dilp2, and possibly other dilps,
affects SSD remains unresolved. In one study, the loss of

dilp2 had female-biased effects on adult weight (11%

reduction in females, 5% reduction in males), whereas

tandem loss of dilp2,3 reduced adult weight in both sexes
Current Opinion in Physiology 2018, 6:46–56
by 7% [45]. In a separate study, SSD in larval weight was

unaffected by loss of dilp2, or loss of dilp1-5 [33��]. At first
glance, this data seems to argue against a role for the dilps
in creating SSD; however, levels of dilp5 mRNA are up-

regulated in dilp2,3 double mutants, and dilp6 mRNA is

strongly up-regulated in animals lacking dilp2,3,5 [45].

Thus, increased knowledge of the sex-specific regulation

of all dilp genes and Dilp proteins, including compensa-

tory regulation [45,46], will be required to interpret data

from studies investigating a role for the dilp genes in the

regulation of SSD. Further, given that both dilp regula-

tion and SSD are modulated by nutrient quantity and

quality [41,61,62], identifying sex-by-diet interactions on

Dilp regulation and SSD will be essential to understand

the individual and combinatorial effects of mutations in

dilp genes on SSD, and other IIS-regulated phenotypes

such as lifespan.

Other than IIS, several growth and signaling pathways

have recently been found to have sex-biased effects on

development and physiology. For example, reduced

levels of potent growth regulator Myc in males likely

contributes to their decreased larval weight, as increasing

the copy number of Myc in males increases body size,

whereas decreased Myc copy number reduces female

larval weight [63�]. Similarly, the transforming growth

factor-b (TGF-b) and epidermal growth factor receptor

(EGFR) signaling pathways have sex-limited effects on

wing shape and size [64�], and the Toll pathway is sex-

specifically regulated both under normal conditions and

in response to infection with Gram-negative bacteria

[65��]. Future studies will be important not only to

identify growth and signaling pathways with sex-biased

effects, but also to determine the developmental and

physiological significance of this sex-specific regulation.

Physiology and metabolism in adult flies
Drosophila is an emerging model to study metabolic

regulation and physiology [66,67], yet few studies include

both males and females. In this section we will describe

recent advances in our knowledge of male–female differ-

ences in adult metabolism and physiology. While many of

these differences reflect mating-induced changes in

females rather than sexual dimorphism in physiology

and metabolism, this knowledge provides an essential

starting point for future studies on the mechanisms

underlying male–female differences in physiology and

metabolism.

Males and females differ in many aspects of metabolism

and physiology under homeostatic conditions (e.g. lipid

metabolism [68]). One important factor that affects male–

female differences in physiology and metabolism is the

level of circulating hormones. For example, titers of the

steroid hormone ecdysone are higher in mated females

[69–71]. Recently, this increased ecdysone level was

shown to play a critical role in establishing a ‘female
www.sciencedirect.com
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Figure 2
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Multiple mechanisms contribute to sex differences in larval growth in Drosophila. A working model to integrate findings from recent studies on sex

differences in the regulation of larval growth. Several mechanisms have been identified, which we describe in detail. (a) Two recent studies

identified a role for the insulin/insulin-like growth factor signaling pathway (IIS) in the regulation of sex differences in body size (sexual size

dimorphism, SSD) [32,42��]. A comparison of Drosophila insulin-like peptide (Dilp) regulation between males and females suggest females have

higher Dilp2 secretion than males, whereas males have higher levels of dilp3 mRNA [42��]. This increased Dilp2 secretion may affect IIS, as

elevated IIS activity was detected in late third instar larvae [42��], though not at earlier stages [33��,42��], supporting a model in which female larval

growth may be increased due to elevated IIS activity. Interestingly, the sex of the fat body, as determined by sex determination gene transformer

(tra), influenced the secretion of Drosophila insulin-like peptide 2 (Dilp2) from the IPCs in a non cell-autonomous manner [42��]. The fat-to-brain

signal responsible for this sex-biased Dilp2 secretion remains unknown, though multiple fat-to-brain signals have been identified in other studies

(e.g. stunted (sun) [57], unpaired-2 (upd2) [55]). (b) A recent study proposed an additional mechanism for the regulation of sex differences in body

size. In this model, the sex of the IPCs and Gad1 neurons, as determined by sex determination gene Sex-lethal (Sxl), controls male–female

differences in larval weight [33��]. Interestingly, Sxls regulation of body size is independent of its main target gene Tra. Furthermore, although the

IPCs are known to produce Dilp2, Dilp3, Dilp5 [40,41], null mutations in dilp2 and mutants lacking dilp1-5 do not completely abolish SSD [33��],
suggesting additional IPC-derived factors, such as Drosulfakinin [133], may be involved. (c) One final study demonstrated that potent growth

regulator Myc may play a role in the regulation of SSD [63�]. Normally, Myc mRNA levels are higher in females than in males [63�]. Interestingly,
males carrying duplications spanning the Myc locus had a larger body size than control males, whereas females heterozygous for a Myc mutant

allele were smaller than control females [63�]. Together, these results suggest that increased Myc levels in females promote an increased rate of

larval growth, perhaps through changes to the levels of ribosomal RNA (rRNA), ribosome biogenesis, and transfer RNA (tRNA) [134,135].

www.sciencedirect.com Current Opinion in Physiology 2018, 6:46–56
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metabolic state’ in which females store increased levels of

triglyceride and glycogen than males [72��]. This

increased energy storage likely plays an important role

in supporting the energetic demands of reproduction

[72��], however, future studies will need to determine

whether male–female differences in ecdysone titers and

energy storage also exist independently of mating. In

addition to modulating energy storage, ecdysone also

regulates early female germline sexual differentiation

[73�], somatic cyst stem cells in the male testis [73�], cell
division in germline stem cells in the ovary [74], and the

creation of sexually dimorphic neural circuits [75]. Given

that ecdysone regulates diverse aspects of physiology and

metabolism [76], more studies will be required to identify

additional phenotypes associated with male–female dif-

ferences in levels of ecdysone, and other circulating

factors such as JH, which modulates lipid metabolism

in the enterocytes of mated females [10�].

Recent studies have also made progress in understanding

male–female differences in metabolism in response to

stress and aging. For example, males and females differ in

adaptation to oxidative stress induced by hydrogen per-

oxide (H2O2) [77
��]. In females, pre-treatment with low

doses of H2O2 before challenge with higher H2O2 doses

promotes survival; males show no survival benefit after

H2O2 pre-treatment. Interestingly, sex-specific expres-

sion of a mitochondrial Lon protease isoform is critical for

this female-specific adaptation to H2O2-induced stress

[77��]. In addition to mitochondrial Lon protease, there is

also sex-specific induction of the 20S proteasome during

adaptation to H2O2-induced stress [78], and sex-specific

sensitivity to genetic variation in the NADP(H) enzyme

network [79]. Sex-specific effects of metabolic regulation

on lifespan have been reported for mitochondrial thior-

edoxin reductase 2 [80], cytosolic copper/zinc superoxide

dismutase [81,82], and DNA repair genes [83], and one

recent study described male–female differences in feed-

ing behavior, stress resistance and lifespan in response to

high sugar feeding [84]. Together with the sex-specific

effects of genes on stress responses and longevity identi-

fied using quantitative genetic approaches [85–90], these

recent studies underline the importance of examining

both sexes in future studies of metabolism, stress

responses, and aging.

Although the studies described above focus on the

genetic, molecular, and biochemical mechanisms under-

lying sex differences inmetabolism, it is important to note

that sexual dimorphism exists in behaviors that modulate

physiology and metabolism. For example, males and

mated females flies differ in sleep [91�,92,93], food intake

[72��], and food preferences [94,95]. Future studies will

provide a more complete understanding of sex differ-

ences in physiology by addressing how sex differences in

behavior impact male–female differences in metabolism.
Current Opinion in Physiology 2018, 6:46–56
New insights into Drosophila sex
determination: studies in females lead the way
Two X chromosomes in female flies triggers the produc-

tion of an X-derived protein called Sex-lethal (Sxl) [96–

98]. Sxl is a splicing factor that introduces a sex-specific

splice into the pre-mRNA of its main downstream target,

transformer (tra); this splicing allows a functional Tra

protein to be produced in females [99–101]. Tra, also a

splicing factor, interacts with its co-factor transformer-2
(tra2) to bind the pre-mRNA of its target genes doublesex
(dsx) and fruitless ( fru) [102–105]. Tra-dependent splicing

of dsx pre-mRNA produces a female-specific isoform

called DsxF. Tra-dependent splicing of fru pre-mRNA

introduces a stop codon into P1 promoter-derived tran-

scripts, thus no Fru P1 proteins are produced in females.

In males, one X chromosome means that no Sxl is

produced, and functional Tra protein is absent. Without

Tra, dsx and fru P1-derived transcripts undergo default

splicing to produce the male-specific isoforms of each

gene, DsxM and FruM, respectively. Together, these

genes explain many aspects of sexual development,

reproduction, and behavior [1,5,7,106–110]. In this sec-

tion, we will highlight new insights into the canonical sex

determination pathway in Drosophila from recent studies

on female development and physiology (Figure 3).

The prevailing model of Drosophila sex determination

suggests the primary function of Tra is to ensure the

appropriate sex-specific splicing of dsx and fru P1-derived
transcripts. The regulation of sexual identity by dsx and

fru has therefore been an intensive area of research,

yielding important insights into sexual development

and reproduction [7,107–120]. Over the past two years,

studies on sex differences in development and physiology

have identified additional Tra-regulated phenotypes. For

example, larval size and adult weight are both reduced in

females lacking Tra [42��,63�], while loss of Tra in males

has no effect [42��]. Although Tra may regulate body size

partly via cell-autonomous effects on cell size, Tra func-

tion in the fat body also plays a key role in mediating the

effects of Tra on body size, as rescuing Tra only in the fat

body restored a normal body size to tra mutant females

[42��]. Interestingly, Tras effects on larval body size are

independent of its only known targets, dsx and fru,
identifying a previously unrecognized branch of the sex

determination pathway that is Tra-dependent, but dsx-
independent and fru-independent [42��] (Figure 3).

Instead, the tra-induced reduction in female body size

may be due to changes in the IIS pathway, as females

lacking fat body tra2 have reduced levels of Dilp2 secre-

tion from the IPCs, and genetically augmenting IIS

activity restores a normal body size to tramutant females

[42��] (Figure 2). However, the molecular mechanisms

underlying Tras regulation of Dilp2 secretion are unclear,

emphasizing a need for more knowledge on the molecular

mechanisms linking Tra and IIS.
www.sciencedirect.com



Sex differences in Drosophila development and physiology Millington and Rideout 51

Figure 3
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New insights into the Drosophila sex determination pathway. According to the prevailing view of Drosophila sex determination, female sex is

specified by the presence of two X chromosomes, which triggers the production of an X-derived protein called Sex-lethal (Sxl). Sxl is a splicing

factor that introduces a sex-specific splice into the pre-mRNA of its main downstream target, transformer (tra); this binding allows a functional Tra

protein to be produced in females. Tra, also a splicing factor, binds to the pre-mRNA of its target genes doublesex (dsx) and fruitless ( fru). Tra-

dependent splicing of dsx pre-mRNA produces a female-specific isoform called DsxF. Tra-dependent splicing of fru pre-mRNA introduces a stop

codon into P1 promoter-derived transcripts, thus no Fru P1 proteins are produced in females. Recent studies on development and physiology

have expanded our knowledge of the sex determination pathway by identifying additional downstream branches of the pathway, and by

identifying context-dependent effects of these pathways in different tissues, and at different times during development. For example, in addition to

the canonical sex determination pathway that operates in the larval and adult fat bodies (a), there is an additional branch of the sex determination

pathway that is Tra-dependent, but dsx-independent, that regulates body size in female larvae [42��]. Tras regulation of body size via this newly

identified branch depends on Tras binding partner transformer2 (tra2) [42��]. Future studies will need to identify downstream targets of Tra that

mediate its effects on larval growth. (b) In the intestinal stem cells (ISCs) this Tra-dependent, dsx-independent, branch of the sex determination

pathway promotes increased ISC proliferation; however, this function of Tra does not require tra2 [9��]. Candidate Tra targets that affect ISC

proliferation include imaginal disc growth factor 1 (idgf1), reduced ocelli (rdo), and Serpin 88Eb (Spn88Eb) [9��]. (c) In the larval and adult central

nervous systems (CNS), Tra and Tra2 specify female neural circuits via regulation of dsx and fru pre-mRNA in the canonical sex determination

pathway, as previously described. Interestingly, Tra may regulate the survival of female-specific Drosophila insulin-like peptide 7 (dilp7)-expressing

neurons in adults through both canonical, and non-canonical pathways [121,122]. In adults and larvae, two recent studies have identified a Sxl-

dependent, but Tra-independent, branch of the pathway that functions in subsets of neurons to create sex differences in physiology [33��,123].
For example, Sxl function in IPCs and Gad1 neurons plays a critical role in creating sex differences in larval weight [33��].
While knowledge of the downstream effectors of Tra is

less developed with respect to its regulation of body size,

more progress has been made in identifying the genes

downstream of this Tra-dependent, dsx-independent and
fru-independent, pathway in ISCs. Hudry et al. (2016)
showed that sexual dimorphism in ISC proliferation in the

Drosophila intestine is regulated by Sxl and tra
www.sciencedirect.com
independently of fru and dsx [9��]. Significantly, this

study identified several new Tra-regulated genes that

reproduce Tras effects on ISC proliferation: reduced ocelli
(rdo), imaginal disc growth factor 1 (idgf1), and Serpin 88Eb
(Spn88Eb) [9��] (Figure 3). Although themolecular mech-

anism underlying Tras regulation of these putative target

genes remains unclear, it is interesting to note that Tras
Current Opinion in Physiology 2018, 6:46–56
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effects on ISC proliferation and body size occur via

distinct molecular mechanisms — Tra regulates body

size together with its binding partner tra2 [42��], whereas
sex differences in ISC proliferation are tra2-independent
[9��]. Interestingly, Tra may act through both canonical

and non-canonical mechanisms in the central nervous

system (CNS) to regulate the survival of female-specific

dilp7 neurons [121,122]. Future studies will be important

to elucidate howTra acquires this cell-specific and tissue-

specific activity at the molecular level.

In addition to Tra, novel insights into the regulation of

Sxl, and its effects on development and physiology, have

recently been published. For example, loss of Sxl in

postmitotic neurons abolished SSD [33��], an effect that

was mediated by Sxl function in at least two subsets of

neurons, the IPCs and Gad1 neurons (Figure 2), but

potentially independently of IIS. Interestingly, Sxls reg-

ulation of SSD was not Tra-dependent, corroborating a

previous report [123] of a Sxl-dependent, but Tra-inde-

pendent, branch of the sex determination pathway in the

CNS. Thus Sxl and Tra act in specific tissues to influence

SSD via regulation of non-canonical target genes,

although their effects differ in magnitude: loss of Tra

in the fat body reduces SSD [42��], whereas reduced Sxl

function in neurons abolishes SSD [33��]. Future studies

will be required to identify Sxl targets in addition to Tra

that mediate its effects on SSD, and to elucidate the

mechanisms underlying the regulation of SSD by both Sxl

and Tra, especially in light of data suggesting the pres-

ence of feedback loops in the sex determination pathway

[107,124]. Further, since Sxl is responsible for the regu-

lation of both dosage compensation and sex determina-

tion, it will be important to understand how changes to Sxl
affect neuronal development, connectivity and function

in the IPCs and Gad1 neurons, and to rule out any adverse

effects of changes to the dosage compensation machinery

in these neurons. Finally, more work will be needed to

explore a role for Sxl in other aspects of development and

physiology. For example, several studies recently identi-

fied spenito (nito) as a novel regulator of Sxl auto-regulation
[125–127]. In females, loss of nito causes masculinization

of female structures by disrupting the transfer of an N6-

methyladenosine (m6A) modification to Sxl pre-mRNA

that is required for Sxls female-specific alternative splic-

ing [125,126]. Interestingly, nito plays a key role in

maintaining triglyceride homeostasis in Drosophila larvae

[128�]. Although the larvae in the nito study were not

sexed, future studies will determine whether nito affects
sex differences in triglyceride homeostasis in part through

its interaction with Sxl.

Beyond Sxl and tra, tra2, dsx and fru also have unexplored
roles in the regulation of development and physiology.

For example, tra2 affects the regulation of triglyceride

storage in adults [129], dsx regulates cell size and mRNA

levels of many circulating factors known to affect
Current Opinion in Physiology 2018, 6:46–56
development and physiology [42��,107], and the activity

of fru neurons has been implicated in the regulation of fat

storage [130]. Thus, studies of development and physiol-

ogy are rapidly identifying new roles for established sex

determination genes. In addition, studies on factors that

regulate development and physiology have provided new

insights into Drosophila sex determination. For example,

steroid hormone ecdysone affects sex determination via

regulation of the let-7-C micro-RNA cluster [73�], and
Chronologically inappropriate morphogenesis (Chinmo) affects
sexual identity in the Drosophila testis via regulation of

sex determination genes dsx and tra [131,132]. Although

more studies are needed to identify additional genes and

pathways that modulate the regulation of sex determina-

tion genes, these studies are likely to yield exciting new

insights into sex determination in Drosophila. Together

with studies to increase knowledge of sex differences in

development and physiology, a deeper understanding of

sex determination mechanisms will ensure Drosophila
remains a leading model for studies of sex differences

in development and physiology.
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